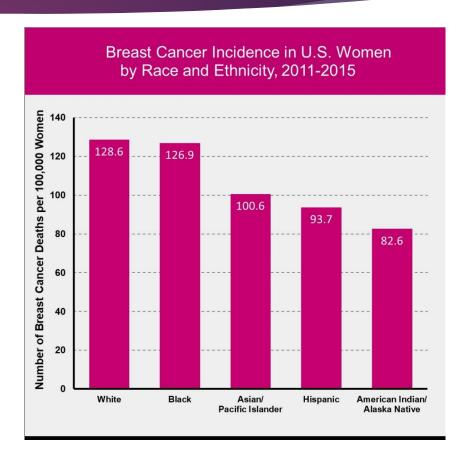
The Journey of Breast Density Legislation

THE NEED FOR SUPPLEMENTAL SCREENING INSURANCE COVERAGE

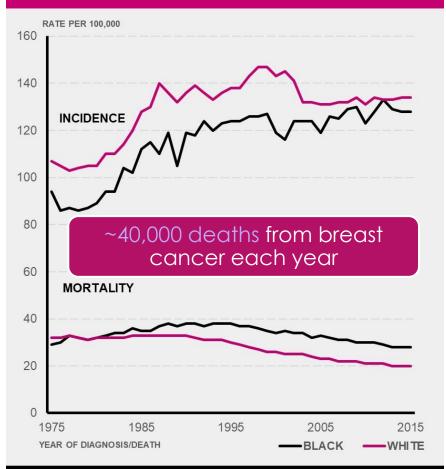

Breast Cancer Statistics

It is estimated that in 2020, there were approximately 276,480 new cases of invasive breast cancer in women

75% of new breast cancers are diagnosed in patients with no family history

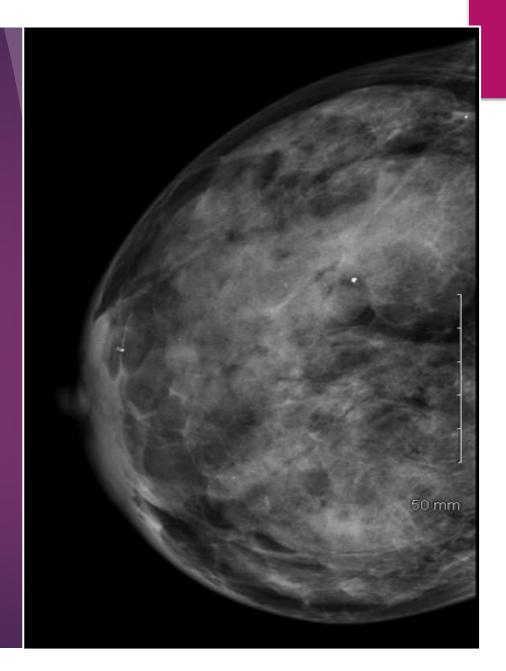
1 in 8 U.S. women will develop breast cancer in their lifetime (\sim 12%)

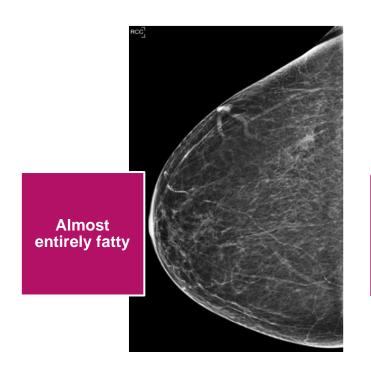
1 in 6 breast cancers are diagnosed in women in their fourth decade of life


Source: SEER Cancer Statistics Review, 1975-2015, 2018

Breast Cancer Mortality

Breast cancer death rates in the U.S. slowly rose from 1975 to 1990 There has been a 39% decrease in breast cancer death rates between 1990 and 2015

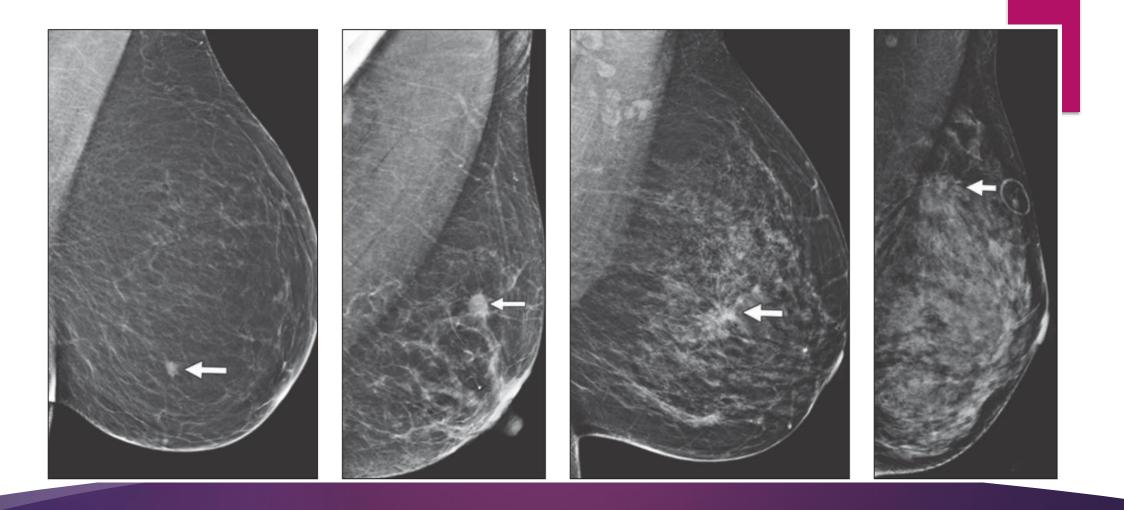

The decline is attributed to improved detection and treatment


BREAST CANCER INCIDENCE & MORTALITY, White (Including Hispanic) Females vs. Black (Including Hispanic) Females

Source: SEER Cancer Statistics Review, 1975-2015, 2018

Breast Density

4 Categories of Breast Density


Breast Composition Categories

- a. The breasts are almost entirely fatty
- b. There are scattered areas of fibroglandular density
- c. The breasts are heterogeneously dense, which may obscure small masses
- d. The breasts are extremely dense, which lowers the sensitivity of mammography

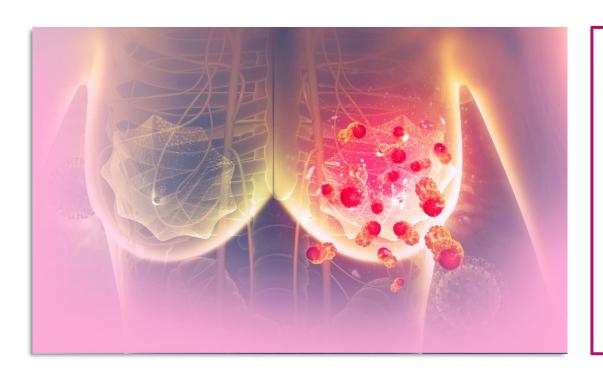
Heterogeneously dense

~40% of women have dense breasts (Categories c & d)

Masking is caused by the lack of contrast between the fibroglandular tissue and breast cancer, both of which appear white on mammography, while fat appears black

Breast Cancer Risk

- Density is a three-pronged risk factor
 - ▶ 4-6 times more likely to have cancer
 - ▶ 17.8 times more likely to have an interval cancer (missed on a mammogram)
 - Kerlikowske et al. showed decreased specificity with higher density

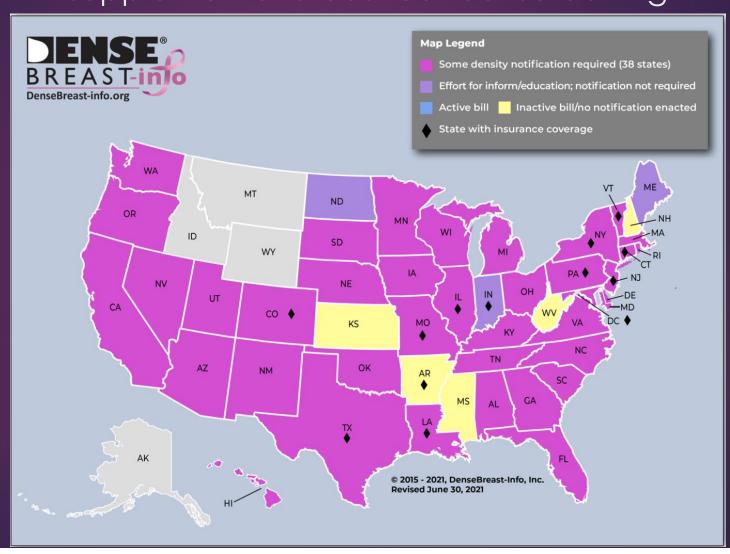

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Mammographic Density and the Risk and Detection of Breast Cancer

Norman F. Boyd, M.D., D.Sc., Helen Guo, M.Sc., Lisa J. Martin, Ph.D., Limei Sun, M.Sc., Jennifer Stone, M.Sc., Eve Fishell, M.D., F.R.C.P.C., Roberta A. Jong, M.D., F.R.C.P.C., Greg Hislop, M.D., F.R.C.P.C., Anna Chiarelli, Ph.D., Salomon Minkin, Ph.D., and Martin J. Yaffe, Ph.D.

Breast Cancer Risk



- Women with dense tissue have breast cancers that are
 - Larger
 - More likely lymph node positive
 - Higher stage
 - More often require mastectomy
 - ▶ Two-fold more likely to result in death

Breast Density Legislation

Currently, only 12 states mandate insurance coverage of supplemental breast cancer screening

Ohio Breast Density Law in 2014

Sec. 3702.40. (A) As used in this section, "mammogram" and "facility" have the same meanings as in section 263b(a) of the "Mammography Quality Standards Act of 1992," 106 Stat. 3547 (1992), 42 U.S.C. 263b(a), as amended.

(B) As required by 21 C.F.R. 900.12(c)(2), a facility shall send to each patient who has a mammogram at the facility a summary of the written report containing the results of the patient's mammogram. If, based on the breast imaging reporting and data system established by the American college of radiology, the patient's mammogram demonstrates that the patient has dense breast tissue, the summary shall include the following statement:

"Your mammogram demonstrates that you have dense breast tissue, which could hide abnormalities. Dense breast tissue, in and of itself, is a relatively common condition. Therefore, this information is not provided to cause undue concern; rather, it is to raise your awareness and promote discussion with your health care provider regarding the presence of dense breast tissue in addition to other risk factors."

The State of Ohio — The Buckeye State
State Capitol *Columbus

Breast Density Notification Law Section 3702.40 (Effective March 19, 2015)

As required by 21 C.F.R. 900.12(c)(3), the facility shall send to the patient's health care provider, if known, a copy of the written report containing the results of the patient's mammogram not later than thirty days after the mammogram was performed.

- (C) This section does not do either of the following:
- (1) Create a new cause of action or substantive legal right against a person, facility, or other entity;
- (2) Create a standard of care, obligation, or duty for a person, facility, or other entity that would provide the basis for a cause of action or substantive legal right, other than the duty to send the summary and written report described in division (B) of this section.

No information about increased breast cancer risk or supplemental screening

Breast Density Legislation: The Gap

- State mandated density notification
 - Does not include information about supplemental screening tests
 - Does not include information about increased risk of breast cancer
 - □ Uses language that exceeds recommended readability levels
- State mandated breast cancer screening coverage does not include tomosynthesis/3D mammography or supplemental screening

Results in income-based health care disparities particularly in rural and urban communities

Bridging the Gap: Advanced Screening

Cancer Detection with Advanced Mammography

Digital Breast
Tomosynthesis (DBT)/
3-D Mammography

- Improves sensitivity and specificity of screening mammography
 - √ ~40% more invasive cancers
 - ✓ Earlier stage at diagnosis
 - No benefit in extremely dense breasts
- ✓ Decreases recall rate
 - √ ~20% fewer callbacks for false positive findings

Cancer Detection with Supplemental Screening

Supplemental screening tests, such as ultrasound and MRI, in addition to the mammogram can substantially increase detection of early-stage, node negative breast cancers and reduce interval cancers in dense breasts

- ACRIN 6666 (2012) Ultrasound
- Kuhl et al. (2014) Abbreviated MRI
- ASTOUND trial (2016) Ultrasound
- Kuhl et al. (2017) Abbreviated MRI
- ASTOUND-2 trial (2018) Ultrasound
- DENSE trial Round 1 (2019) MRI
- EA 1141 (2020) Abbreviated MRI
- DENSE trial Round 2 (2021) MRI

Cancer Detection with Supplemental Screening

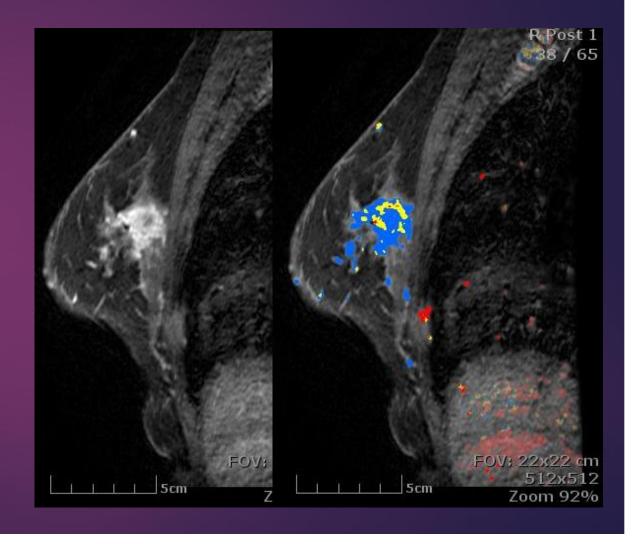
Ultrasound detects up to <u>2 times</u> <u>more</u> breast cancers than the 2D mammogram

MRI detects >2.4 times more
breast cancers than the 3D
mammogram and up to 5 times
more than the 2D mammogram
in women with dense breasts
who are average risk

Method	Breast Density	Added Cancer Detection	Projected Impact on False Positive Rate	Types of Cancers Seen
Tomosynthesis (3D mammography) ^a	Scattered fibroglandular density or Heterogeneously dense	1-2 per 1000 [1-3]	Overall decrease in false positive recalls to 80 to 90 per 1000; May drop to 60 to 70 per 1000 after multiple screening rounds (based on a single- center study) [5]	The cancers seen only on tomosynthesis are nearly all invasive; greatest detection benefit and shift to smaller, better prognosis cancers seen in women 40-49 years old [6]
Tomosynthesis (3D mammography) ^a	Extremely dense	Negligible [2, 7, 8]	No significant reduction in false positive recall rate	Not applicable
Ultrasound (US) (first round)	Heterogeneously dense or Extremely dense	2-3 per 1000 [9]	Increase in false positive recalls to 170 to 200 per 1000	More than 85% of cancers seen only on US are invasive; 82-90% are node negative [9] (still contained within the breast)
Ultrasound (US) (subsequent rounds)	Heterogeneously dense or Extremely dense	2-3 per 1000	Increase in false positive recalls to 150 to 170 per 1000 [10, 11]	More than 85% of cancers seen only on US are invasive; 82-90% are node negative [9] (still contained within the breast)
Ultrasound vs. tomosynthesis	Heterogeneously dense or Extremely dense	2-3 per 1000 more with US [12, 13]	Increase in false positive recalls with US ^b	
MRI (first round)	Extremely dense	16 per 1000 [14]	Increase in false positive recalls to 178 per 1000	13 per 1000 invasive cancer yield (3 per 1000 are non-invasive, i.e. DCIS) seen only on MRI
MRI (subsequent rounds)	Extremely dense	6 per 1000 [15]	Increase in false positive recalls to 127 per 1000	4 per 1000 invasive cancer yield (2 per 1000 are non-invasive, i.e. DCIS) seen only on MRI
Abbreviated ("fast" or "mini") MRI after tomosynthesis ^c	Heterogeneously dense or Extremely dense	10 per 1000 [16]	Increase in false positive recalls: 133 per 1000 for MRI vs. 26 per 1000 for tomosynthesis	7 per 1000 invasive cancer yield (3 per 1000 are non-invasive) seen only on MRI in first round of screening © DenseBreast-info.org and Dr. Wendie Berg

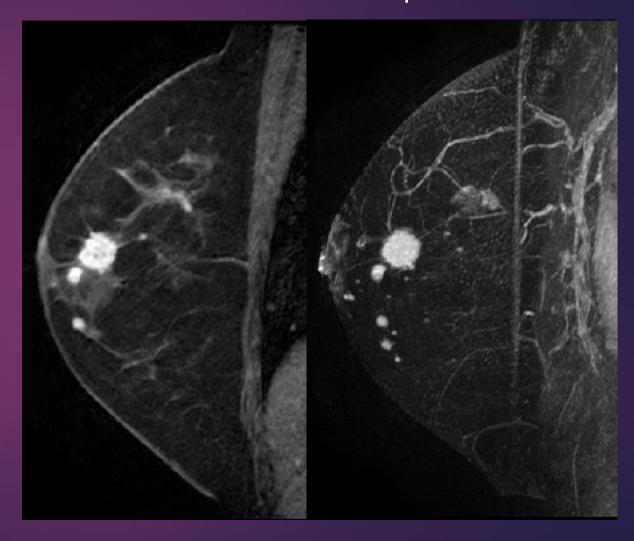
DenseBreast-Info.org

DCIS = ductal carcinoma in situ


^a In many centers, a "standard" 2D mammogram can be created from the same projection images used to generate the tomosynthesis ("synthetic" 2D mammogram) so that there is no added radiation or second exposure for the 2D mammogram.

b In the Italian multicenter ASTOUND-2 trial, ultrasound increased recalls more than tomosynthesis (1.0% vs. 0.3%) after a negative 2D mammogram, but recall rates are not comparable to those in the United States.

c In this prospective trial across 48 centers in the United States and Germany, abbreviated MRI was compared to tomosynthesis (3D mammography).


Mammogram from June

Breast MRI from June

Screening Mammogram from March

Breast MRI from April

Screening Mammogram from May Breast MRI from May FOV: 22 FOV: 22 Zoon

Ohio Breast Cancer
Screening
Modernization Act

Ohio H.B. 371

Extends coverage to include tomosynthesis

Extends coverage to include a yearly mammogram

Removes age limitations for screening mammography

Provides additional coverage for supplemental screening

Improves dense breast notification letter to patients

References

- DESANTIS CE, MA J, GAUDET MM, ET AL. BREAST CANCER STATISTICS, 2019. CA CANCER J CLIN 2019;69(6), 438-451.
- 2. RAFFERTY EA, DURAND MA, CONANT EF, ET AL. BREAST CANCER SCREENING USING TOMOSYNTHESIS AND DIGITAL MAMMOGRAPHY IN DENSE AND NONDENSE BREASTS. JAMA 2016:31.5(1.6):1784-1786
- 3. GREENBERG JS, JAVITT MC, KATZEN J, ET AL. CLINICAL PERFORMANCE METRICS OF 3D DIGITAL BREAST TOMOSYNTHESIS COMPARED WITH 2D DIGITAL MAMMOGRAPHY FOR BREAST CANCE SCREENING IN COMMUNITY PRACTICE. AM J ROENTGENOL 2014;203(3):687-93.
- 4. BERG WA, ZHANG Z, LEHRER D, ET AL. DETECTION OF BREAST CANCER WITH ADDITION OF ANNUAL SCREENING ULTRASOUND OR A SINGLE SCREENING MRI TO MAMMOGRAPHY IN WOMEN WITH ELEVATED BREAST CANCER RISK. JAMA 2012;307(13):1394–1404.
- TAGLIAFICO AS, CALABRESE M, MARISCOTTI G, ET AL. ADJUNCT SCREENING WITH TOMOSYNTHESIS OR ULTRASOUND IN WOMEN WITH MAMMOGRAPHY-NEGATIVE DENSE BREASTS: INTERIM REPORT OF A PROSPECTIVE COMPARATIVE TRIAL. J CLIN ONCOL 2016;34:1882-1888.
- TAGLIAFICO AS, MARISCOTTI G, VALDORA F, ET AL. A PROSPECTIVE COMPARATIVE TRIAL OF ADJUNCT SCREENING WITH TOMOSYNTHESIS OR ULTRASOUND IN WOMEN WITH MAMMOGRAPHY-NEGATIVE DENSE BREASTS (ASTOUND-2). EUR J CANCER 2018;104:39-46.
- 7. BOYD NF, GUO H, MARTIN LJ, ET AL. MAMMOGRAPHIC DENSITY AND THE RISK AND DETECTION OF BREAST CANCER. N ENGL J MED 2007;356(3):227-236.
- 8. KERLIKOWSKE K, HUBBARD RA, MIGLIORETTI DL, ET AL. COMPARATIVE EFFECTIVENESS OF DIGITAL VERSUS FILM-SCREEN MAMMOGRAPHY IN COMMUNITY PRACTICE IN THE UNITED STATES: A COHORT STUDY. ANN INTERN MED 2011;155(8):493–502.
- 9. PARRIS T, WAKEFIELD D, FRIMMER H. REAL WORLD PERFORMANCE OF SCREENING BREAST ULTRASOUND FOLLOWING ENACTMENT OF CONNECTICUT BILL 458. BREAST J 2013;19(1):64–70.
- 10. KUHL CK, SCHRADING S, STROBEL K, ET AL. ABBREVIATED BREAST MAGNETIC RESONANCE IMAGING (MRI): FIRST POSTCONTRAST SUBTRACTED IMAGES AND MAXIMUM-INTENSITY PROJECTION A NOVEL APPROACH TO BREAST CANCER SCREENING WITH MRI. J CLIN ONCOL 2014;32(22):2304-2310.
- BUTLER RS. HOOLEY RJ. SCREENING BREAST ULTRASOUND: UPDATE AFTER 10 YEARS OF BREAST DENSITY NOTIFICATION LAWS, AM J ROENTGENOL 2020:214:1424-1435.
- BAKKER ME DE LANGE SV. PLINAPPEL RM ET AL SUPPLEMENTAL MRI SCREENING FOR WOMEN WITH EXTREMELY DENSE BREAST TISSUE, N ENGL. LMED 2019:381/221:2091–2102
- 13. KUHL CK, STROBEL K, BIELING H, ET AL. SUPPLEMENTAL BREAST MR IMAGING SCREENING OF WOMEN WITH AVERAGE RISK OF BREAST CANCER. RADIOLOGY 2017;283(2):361–370.
- COMSTOCK CE, GATSONIS C, NEWSTEAD GM, ET AL. COMPARISON OF ABBREVIATED BREAST MRI VS DIGITAL BREAST TOMOSYNTHESIS FOR BREAST CANCER DETECTION AMONG WOMEN WITH DENSE BREASTS UNDERGOING SCREENING. JAMA 2020;323(8):746-756.
- VEENHUIZEN SGA, DE LANGE SV, BAKKER MF, ET AL. SUPPLEMENTAL BREAST MRI FOR WOMEN WITH EXTREMELY DENSE BREASTS: RESULTS OF THE SECOND SCREENING ROUND OF THE DENSE TRIAL. RADIOLOGY 2021.
- DENSEBREAST-INFO WEBSITE. CANCER DETECTION BY SCREENING METHOD, DENSEBREAST-INFO, ORG/SCREENING-TECHNOLOGIES/CANCER-DETECTION-BY-SCREENING-METHOD, ACCESSED OCTOBER 12, 2021